8 research outputs found

    Model-based generation of an IEC 61499 control application for a flexible robot system

    No full text
    Rasch veränderliche Marktsituationen, individuelle Kundenbedürfnisse und wachsende Konkurrenz erfordern häufig eine schnelle Anpassung von Fertigungsprozessen an die neuen Gegebenheiten.Um diesen Anforderungen unter Einhaltung strenger Qualitätsbestimmungen und kleinen Losgrößen gerecht werden zu können, werden zunehmend flexible Robotersysteme eingesetzt. Die hohe Flexibilität solcher Systeme kann nur bei schneller Konfigurierbarkeit und Rekonfigurierbarkeit gewährleistet werden.Ziel dieser Arbeit ist die Entwicklung einer modellbasierten Engineering-Methode, welche die vereinfachte Programmierung einer Steuerungsapplikation für ein flexibles, modulares Robotersystem ermöglicht. Der vorgestellte Ansatz basiert auf den Methoden der Workflow Modellierung, welche sich zur Beschreibung von Prozessen in unterschiedlichen Tätigkeitsbereichen zunehmend etablieren. Für die Generierung einer Steuerungsapplikation, basierend auf dem modellierten Prozess, werden Ansätze zur Automatischen Codegenerierung angewendet.Durch Einbindung der 3D-Simulationstechnologie in den Engineering-Prozess wird die Validierung und iterative Entwicklung der resultierenden Steuerungsapplikation ermöglicht.Die im Rahmen dieser Arbeit vorgestellte Systemarchitektur, umfasst eine Anzahl bereits existierender Entwicklungswerkzeuge und Frameworks. Diese werden um die für die Eingineering-Methode notwendigen Funtionalitäten erweitert.In diesem Zusammenhang wird eine grafische Workflow Modellierungssprache eingeführt, welche die intuitive Modellierung des Prozesses erlaubt, der durch die Komponenten des betrachteten Robotersystems durchgeführt werden soll. Im Weiteren wird ein Codegenerator vorgestellt, welcher eine IEC 61499-konforme Steuerunsapplikation generiert. Aufgabe der Steuerungsapplikation ist es die Komponenten des Robotersystems so zu koordinieren, dass das geforderte Prozessverhalten realisiert wird.Die ersten Anwendungsbeispiele, bei denen die entwickelte Engineering-Methode eingesetzt wurde, zeigten vernünftige Ergebnisse, welche eine weitere Entwicklung der Methode, für komplexere Anwendungsbeispiele, motivieren.Today's manufacturing processes need to be fast adaptable to new customer demands, fast market changes and strong business competition.To cope with these requirements and further fulfil high quality requirements and small lot sizes, the appliance of flexible robotic systems gains increasing popularity. High flexibility of such systems can only be achieved if they are fast configurable and reconfigurable.The intention of this work is to develop a model-based engineering method, which enables simplified programming of a control application for a flexible and modular robotic system. This method is based on Workflow Modelling that has emerged as promising technique to describe and optimize processes in different fields of activities. Additionally, Automatic Code Generation methodologies are applied to produce an executable control application out of the modelled process. Finally, the integration of 3D-Simulation technology into the engineering process allows early validation of the resulting control application, thus enabling iterative development.A system architecture is presented that includes existing development frameworks and tools, which are extended with required functionalities. In this context, a graphicalWorkflow Modelling Language is introduced that facilitates the intuitive description of the process, which should be performed by the components of the considered robotic system. Moreover, a Code Generator is presented which generates the resulting control application that is conform with the industrial standard IEC 61499. The control application coordinates the components of the robotic system in order to realize the desired process behaviour.First appliances of the developed engineering method to example applications, show reasonable results and encourage further development, especially towards more complex applications.11

    A decision support methodology for embodiment design and process chain selection for hybrid manufacturing platforms

    Get PDF
    This paper presents a methodology for the transformation of a product concept into a detailed design and manufacturing process chain for hybrid manufacturing platforms. Hybrid platforms offer new capabilities and opportunities for product design. However, they require high levels of process expertise for effective design and effective process selection. Design for hybrid manufacture is challenging as there is a requirement to understand a number of technologies, which may be highly varied. To address this challenge, a knowledge-based decision support system developed in this paper enables manufacturing expertise to be integrated into procedures for product design and process chain selection. This formalised numerical methodology is able to consider a wider range of varied manufacturing processes than any previous study. A feature-based design method is developed, which guides the designer towards an optimised product design during the embodiment design phase, and a process chain selection program is utilised to enable the effective analysis of a product design based on product evaluation criteria. The methodology has been successfully applied to the design of an LED product with internal geometries and electronics

    Models for Interoperable Human Robot Collaboration

    No full text
    In this initial research work, different approaches that allow to represent production processes that can be shared by humans and robots are analyzed. Focus is given to approaches that support modular process model structures, allowing to hide details of how tasks are implemented. This is necessary, as a single task might be realized by a human or robot, and both agents need the task description on a different level of granularity
    corecore